## Right-angled triangles

## Pythagoras' Theorem

You need to be able to calculate missing sides in right angled triangles, given two sides by using Pythagoras' theorem.


## SOHCAHTOA

You need to find missing angles and missing sides in right angled triangles by use SOHCAHTOA (Sin Opposite Hypotenuse Cosine Adjacent Hypotenuse Tangent Opposite Adjacent)


## Angles from 0 0 to $\mathbf{3 6 0}$ 응

The calculator will give you one answer, usually between 00 and 900 for an equation in the form $\sin \theta=x$. However there will be two answers between 00 and 360…

A basic rule is this:

- Calculate one value using $\sin \theta=0.5$
your calculator

Type in $\sin ^{-1}(0.5)=30$ ㅇ
$\cos \theta=0.7$
Type in $\cos ^{-1}(0.7)=46$ ㅇ
$\tan \theta=1.2$
Type in $\tan ^{-1}(1.2)=30$ o

- For sin then the second answer will be 180- $\theta$
- For cos then the second answer will be $360-\theta$
- For tan then the second answer will be $180+\theta$
$180-30=150$
Answers are 300 and 150 응
$360-46=316$
Answers are 46o and 316o
$180+50=230$
Answers are 50 and 230


## Non-right angled triangles

Formulae for non-right angled triangles are based on the diagram and notation below below.


You should be able to apply the sine rule, cosine rule, and the area of a triangle. All of these formulae are in the IB formula booklet.

## The sine rule ( non-right angled triangle)

The sine rule is used when:

- You are given two sides and an angle you are missing an angle.
- You are given two angles and a side and you are missing a side.

$$
\begin{array}{ll}
\text { Missing side: - } & \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
\text { Missing angle:- } & \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\end{array}
$$

## Example

The missing angle in the triangle below is known to be obtuse. Find the missing angle.


Use the formula $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$, where $\mathrm{a}=12, \mathrm{~b}=7$ and $\mathrm{B}=25$.
The solution will be: $\quad \frac{\sin A}{12}=\frac{\sin 25}{7}$

$$
\begin{aligned}
& \sin A=\frac{\sin 25 \times 12}{7} \\
& \sin A=0.724 \\
& A=\sin ^{-1}(0.724)
\end{aligned}
$$

$$
A=460
$$

But as A is obtuse (between $90^{\circ}$ and 180 ${ }^{\circ}$ ) the answer will be

$$
180-46=1340
$$

## The cosine rule (non-right angled triangle)

The cosine rule is used when:

- You are given three sides and you are missing an angle.
- You are given two sides and the angle opposite the missing side.

$$
\begin{array}{ll}
\text { Missing side: - } & a^{2}=b^{2}+c^{2}-(2 b c \cos A) \\
\text { Missing angle:- } & \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{array}
$$

## Example

Find the missing angle in the triangle below.


Use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$, where $\mathrm{a}=10$ as it is opposite $\theta, \mathrm{b}=8$ and $\mathrm{c}=$ 7.

The solution will be: $\quad \cos \theta=\frac{7^{2}+8^{2}-10^{2}}{2 \times 7 \times 8}$

$$
\begin{aligned}
& \cos \theta=\frac{13}{112} \\
& \theta=\cos ^{-1}\left(\frac{13}{112}\right) \\
& \theta=830
\end{aligned}
$$

## Area of a triangle (non-right angled triangle)

The area of a triangle can be found if two sides are known and the angle between them is give. The formula is given below.

$$
\text { Area of a triangle: - } \quad \frac{1}{2} a b \sin C
$$

## Example

Find the area of the triangle below.


Use the formula $\frac{1}{2} a b \sin C$, where $\mathrm{a}=9, \mathrm{~b}=15$ and $\mathrm{C}=40^{\circ}$.
$\frac{1}{2} \times 15 \times 9 \times \sin (40)$
$=43.4$ units $^{2}$

## Bearings

Bearings are always 3 figure angles. The basic rules for finding a bearing are:

- Locate where you 'are'. This will be the location that follows from. E.g. If you are asked to find the bearing of Bangkok from Columbo, you will be at Columbo.
- Draw a line between the two locations.
- Draw a line going north from where you are.
- Draw an arc starting at the line going north and stopping when you reach the destination line.
- The angle of the arc is the bearing you need. Always give 3 figures in your final answer, so if the angle measure 35 , the bearing will be 035o.


## Guided example

Two ships set sail from the port of Palermo. One sails to Cagliari a distance of 390 km on a bearing of 285 ㅇ. The other ship sails to Naples on a bearing of $010^{\circ}$ and a distance of 320 km .
(a) Draw a diagram to show the information given above.
(b) Use you diagram to find the area in $\mathrm{km}^{2}$ between the towns of Palermo, Cagliari, and Naples.
(c) Find the bearing and distance from Cagliari to Naples.

Answer (a)


## Answer (b)

As the triangle is not a right-angled triangle then $\frac{1}{2} a b \operatorname{Sin} C$ formula:
$\frac{1}{2} \times 390 \times 320 \times \sin (85)=62163 \mathrm{~km}^{2}$

Answer (c)
The direct distance between C and N can be calculated using the cosine rule:
$\mathrm{CN}^{2}=320^{2}+390^{2}-(2 \times 320 \times 390 \times \cos 85)$
$=232745$
$\mathrm{CN}=482 \mathrm{~km}$


The bearing is slightly harder. Look at the diagram below and the bearing is marked. The angle 750 is calculated using the fact that the two lines north (from $P$ and from C) are parallel and therefore alternate angles equal.
Calculating $\theta$ will adding this with 75 , before taking it away from 180 will give us the bearing.
The angle $\theta$ can be calculated using the sine rule:
$\frac{\sin \theta}{320}=\frac{\sin 85}{482}$
$\sin \theta=0.661$
$\theta=41$
The bearing is therefore $180-(75+41)=0640$

## 3-d trigonometry

3-d trigonometry basically involves breaking down the 3-d shape into 2-d right angle triangles and using either Pythagoras' theorem or SOHCAHTOA.
Examples of this can be seen in the worked example below.

## Guided example

In the diagram below $A B=4 \mathrm{~cm}, B C=5 \mathrm{~cm}$, and $C G=7 \mathrm{~cm}$.
(a) Calculate the length of $A C$.
(b) Calculate the length AG.
(c) Find the angle made between the base of the cuboid ABCD and the line AG.


Answer (a)


By drawing the right angled triangle $A B C$ we can see that a simple use of Pythaoras' theorem will result in $A C=\sqrt{4^{2}+5^{2}}=6.4$

Answer (b)


Again by drawing a right angled triangle ACG we can see that $A G=\sqrt{6.4^{2}+7^{2}}=$ 9.49

Answer (c)
Using the same right-angled triangle you need to calculate the value of $\theta$ by using tan.
$\tan \theta=\frac{7}{\sqrt{26}}=540$

