UNIT 4 • DESCRIBING DATA

Lesson 3: Interpreting Linear Models

Guided Practice 4.3.1

Example 1

The graph below contains a linear model that approximates the relationship between the size of a home and how much it costs. The x-axis represents size in square feet, and the y-axis represents cost in dollars. Describe what the slope and the y-intercept of the linear model mean in terms of housing prices.

UNIT 4 • DESCRIBING DATA

Lesson 3: Interpreting Linear Models

1. Find the equation of the linear fit.

The general equation of a line in slope-intercept form is $y=m x+b$, where m is the slope and b is the y-intercept.

Find two points on the line using the graph.
The graph contains the points $(300,60,000)$ and $(600,120,000)$.
The formula to find the slope between two points (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$
is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
Substitute $(300,60,000)$ and $(600,120,000)$ into the formula to find the slope.

$$
\begin{array}{ll}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
=\frac{120,000-60,000}{600-300} & \text { Substitute }(300,60,000) \text { and }(600,120,000) \\
\frac{60,000}{300}=200 & \text { for }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) . \\
\text { Simplify as needed. }
\end{array}
$$

The slope between the two points $(300,60,000)$ and $(600,120,000)$ is 200.
Find the y-intercept. Use the equation for slope-intercept form, $y=m x+b$, where b is the y-intercept.
Replace x and y with values from a single point on the line. Let's use (300, 60,000).

Replace m with the slope, 200. Solve for b.

$$
\begin{array}{ll}
y=m x+b & \text { Equation for slope-intercept form } \\
60,000=200(300)+b & \text { Substitute values for } x, y \text {, and } m . \\
60,000=60,000+b & \text { Multiply. } \\
0=b & \text { Subtract } 60,000 \text { from both sides. }
\end{array}
$$

The y-intercept of the linear model is 0 .
The equation of the line is $y=200 x$.

UNIT 4 • DESCRIBING DATA

Lesson 3: Interpreting Linear Models

2. Determine the units of the slope.

Divide the units on the y-axis by the units on the x-axis: $\frac{\text { dollars }}{\text { square feet }}$. The units of the slope are dollars per square foot.
3. Describe what the slope means in context.

The slope is the change in cost of the home for each square foot of the home. The slope describes how price is affected by the size of the home purchased. A positive slope means the quantity represented by the y-axis increases when the quantity represented by the x-axis also increases.

The cost of the home increases by $\$ 200$ for each square foot.
4. Determine the units of the y-intercept.

The units of the y-intercept are the units of the y-axis: dollars.
5. Describe what the y-intercept means in context.

The y-intercept is the value of the equation when $x=0$, or when the size of the home is 0 square feet. For a home with no area, or for no home, the cost is $\$ 0$.

Example 2

A teller at a bank records the amount of time a customer waits in line and the number of people in line ahead of that customer when he or she entered the line. Describe the relationship between waiting time and the people ahead of a customer when the customer enters a line.

People ahead of customer	Minutes waiting
1	10
2	21
3	32
5	35
8	42
9	45
10	61

UNIT 4 • DESCRIBING DATA

Lesson 3: Interpreting Linear Models

1. Create a scatter plot of the data.

Let the x-axis represent the number of people ahead of the customer and the y-axis represent the minutes spent waiting.

Number of people ahead
2. Find the equation of a linear model to represent the data.

Use two points to estimate a linear model. A line through the two points should have approximately the same number of data values both above and below the line. A line through the first and last data points, $(1,10)$ and $(10,61)$, appears to be a good approximation of the data. Find the slope.
The slope between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Substitute
the points into the formula to find the slope.

$$
\begin{array}{ll}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { Slope formula } \\
\frac{61-10}{10-1} & \text { Substitute }(1,10) \text { and }(10,61) \text { for }\left(x_{1}, y_{1}\right) \\
\frac{51}{9} \approx 5.67 & \text { and }\left(x_{2}, y_{2}\right) . \\
& \text { Simplify as needed. }
\end{array}
$$

The slope between the two points $(1,10)$ and $(10,61)$ is ≈ 5.67.

Find the y-intercept. Use the equation for slope-intercept form, $y=m x+b$, where b is the y-intercept.
Replace x and y with values from a single point on the line. Let's use $(1,10)$.
Replace m with the slope, 5.67 . Solve for b.

$$
\begin{array}{ll}
y=m x+b & \text { Equation for slope-intercept form } \\
10=1(5.67)+b & \text { Substitute values for } x, y \text {, and } m . \\
10=5.67+b & \text { Simplify } \\
4.33=b & \text { Subtract } 5.67 \text { from both sides. }
\end{array}
$$

The y-intercept of the linear model is 4.33 .
The equation of the line is $y=5.67 x+4.33$.

UNIT 4 • DESCRIBING DATA

Lesson 3: Interpreting Linear Models

3. Determine the units of the slope.

Divide the units on the y-axis by the units on the x-axis:
$\frac{\text { minutes spent waiting }}{\text { number of people ahead }}=\frac{\text { minutes }}{\text { person }}$
The units of the slope are minutes per person.
4. Describe what the slope means in context.

The slope describes how the waiting time increases for each person in line ahead of the customer. A customer waits approximately 5.67 minutes for each person who is in line ahead of the customer.
5. Determine the units of the y-intercept.

The units of the y-intercept are the units of the y-axis: minutes.
6. Describe what the y-intercept means in context.

The y-intercept is the value of the equation when $x=0$, or when the number of people ahead of the customer is 0 . The y-intercept is 4.33 . In this context, the y-intercept isn't relevant, because if no one was in line ahead of a customer, the wait time would be 0 minutes. Creating a linear model that matched the data resulted in a y-intercept that wasn't 0 , but this value isn't related to the context of the situation.

UNIT 4 • DESCRIBING DATA

Lesson 3: Interpreting Linear Models

Example 3

For hair that is 12 inches or longer, a hair salon charges for haircuts based on hair length according to the equation $y=5 x+35$, where x is the number of inches longer than 12 inches (hair length -12) and y is the cost in dollars. Describe what the slope and y-intercept mean in context.

1. Determine the units of the slope.

Divide the units of the dependent variable, y, by the units of the independent variable, x :
$\frac{\text { cost in dollars }}{\text { hair length greater than } 12 \text { inches }}=\frac{\text { dollars }}{\text { inch }}$
2. Describe what the slope means in context.

The units of the slope are dollars per inch. The slope describes how the cost of the haircut increases for each inch of hair length greater than 12 inches.
3. Determine the units of the y-intercept.

The units of the y-intercept are the units of the dependent variable, y : dollars.
4. Describe what the y-intercept means in context.

The y-intercept is the value of the equation when $x=0$, or when hair length is not greater than 12 inches. The y-intercept is the cost of a haircut when a customer's hair is no longer than 12 inches. A haircut is $\$ 35$ if a customer's hair isn't longer than 12 inches.

